
ULASS1FD
SEC L"I CLASSII I C.A*1O F or 4 S*3 PA.[C (Wenc Da?.to ted)

REPORT DOCUMENTATION PAGE o "Mrn%

1.~ ~ ~ ~~FL 11pv't IIti Ur J. rOVT ACCESSI110 3. OJCIP~Ih1 S CA7*.O.8poI

4. 711L I.' TYPE Of REP00l A PERIOD COVERED

Ada Com~piler Validation Summary]Report. 16 Nov. 1989 to 01 Dec. 1990
Corporation, VADS VMS-MIL-STD-1750A, V6.0, MP, Eflc'oA-

00 11 (Host) to Tektronix 1750A Emulator (Ethernet Download) 6. PERFOR04 C.1 f RE*PORT Nui
U) vl.00-00 (Target), 891116WI.10194.______________o r r7.TNOs) f. CONItACT 00 6RAh7 J6IWj

Wrig~lt,-Patterson AFB
O Dayton, OH, LISA

VO . PRFtOAka~h 06.1WZAIIO AND ADDRESS 10. PADCRAM ELINE41. PRP2E:. TAS&

4 Wright-Patterson AFBARA&WK hTNW:S

Dayton, O1H, USA

I). 5 CD%'00.04 OFFICE NAMi AND APDALSS 12. REPOR! DATE
Ada Joint Program Office

~'United States Department of Defense ~~Q
W hashington, DC 20301-3081

14. NC% 10;h AGEhT hAMa. A ADDRSS(IofefentfrormCoitroijnOtfice) 15. S[CuAlli CLASS ''1eo)

Wright-Patterson AFB N* CLASSIFAIDo~&s
Dayton, OH, LISA M L(N/

16. V1SIR1I.jT10% SIA!LMLPI (ofthis~eporr)

Approved for public release; distribution unlimited.

17. D1S*R.B.710% S-AElU."s (ok2ebCecHo"'~' Cfaremlfefeo1)

35. 91 VN:QS (COntinve 0M reverseSiC J~ fntct1u anietf by block number)

Ada ProgrAm-r.ing language, Ada Compiler Validation Summary Rep~rt, Aea
Cornpiler Validation Capability, ACVC, Validation T1esting, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ASl/1L-S-D-
1815A, Ada Joint Program Office, AJPO

20. ASSIRA'I (Comomt everv'se side if necessary andei.f by block number)

Verdix Corporation VADS VMS-MIL-STD-1750A, V6.0, HP, Wright-Patterson AFB, OH, DEC Micro-

VAX III under VMS 5.0 (Host) to Tektronix 1750A Emulator (Ethernet Download), vl.00-00

under VADS EXEC v6.0 (Target), ACVC 1.10

DO ' 1473 101110k- or 1 a*Ji' 65 IS Ob$OLt(E
I JAN 73 S/h 01020-014-5601 UNCLASSME1D

StCuRli, CLASSIfICA10 sO'or TI*S PA;E (Avm ~Ddante teU-

AVF Control Number: AVF-VSR-345.0190
89-08-30-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT;

Certificate Number: 891116W1.10194
Verdix Corporation

VADS VMS->MIL-STD-1750A, V6.0, MP
DEC MicroVAX III Host

and Tektronix 1750A Emulator (Ethernet Download), vl.00-O0 Target

Completion of On-Site Testing:
16 November 1989

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

iII (Im I I

Ada Compiler Validation Summary Report:

Compiler Name: VADS VMS->MIL-STD-1750A, V6.0, MP

Certificate Number: 891116W1.1019h

Host: DEC MicroVAX III under
VMS 5.0

Target: Tektronix 1750A Emulator (Ethernet Download),
vl.0O-O0 under VADS EXEC v6.0

Testing Completed 16 November 1989 Using ACVC 1.10

Customer Agreement Number: 89-08-30-VRX

This report has been reviewed and i- approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Accesio. - r_ . .

/! In / , ;NTIS

CRA-Y
..

Ada Validatior '1rganization U:d , o." d

Dr. John F. Kramer Jushf~c:t , .
Institute for Defense Analyses
Alexandria VA 22311 By

2 ,-'i ..t,,:

Ada Joint Program Office Dist

Dr. John Solomond
Director
Department of Defense I
Washington DC 20301

I)

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES. 1 -3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATTON CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 3-5
3.7 ADDITIONAL TESTING INFORMATION3-5
3.7.1 Prevalidation3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-6

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY VERDIX CORPORATION

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

• To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing wa- completed 16 November 1989 at Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815AFFebruary 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Oice, May 1989.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

1-4

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK' -F'*E, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the CIass C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: VADS VMS->MIL-STD-1750A, V6.0, MP

ACVC Version: 1.10

Certificate Number: 891116W1.10194

Host Computer:

Machine: DEC MicroVAX III

Operating System: VMS 5.0

Memory Size: 16 MB

Target Computer:

Machine: Tektronix 1750A Emulator
(Ethernet Download), vl.O0-O0

Operating System: VADS EXEC v6.0

Memory Size: 2 MW

2-1

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55AO3A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 10
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
LONG INTEGER and LONG FLOAT in package STANDARD. (See tests
B8601T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) Sometimes CONSTRAINTERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round away from
zero. (See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round away
from zero. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises CONSTRAINT ERROR only
for a two-dim array subtype when the big dimension is the
second one. (See test C36003A.)

(2) NUMERIC ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components with each component
being a null array. (See test C36202A.)

(3) No exception is raised when 'LENGTH is applied to an array
type with SYSTEM.MAX INT + 2 components with each component
being a null array. (See test C36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises NUMERICERROR when the array objects are sliced. (See
test C52103X.)

2-3

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises CONSTRAINT ERROR when the
length of a dimension is calculated and exceeds INTEGER'LAST.
(See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises no exception. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked for identical
bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

h. Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

2-4

CONFIGURATION INFORMATION

i. Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CAI012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3O1lA.)

j. Input and output.

(1) The package SEQUENTIAL 10 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT 10 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE21OIH, EE2401D,and EE240IG.)

(3) The Director, AJPO, has determined (AI-00332) that every call
to OPEN and CREATE must raise USE ERROR or NAME ERROR if file
input/output is not supported. This implementation exhibits
this behavior for SEQUENTIALI0, DIRECT I0, and TEXT I0.

2-5

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 637 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 285
executable tests that use floating-point precision exceeding that supported
by the implementation and 242 executable tests that use file operations not
supported by the implementation. Modifications to the code, processing, or
grading for 13 tests were required to successfully demonstrate the test
objective.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 129 1131 1698 16 16 46 3036

Inapplicable 0 7 617 1 12 0 637

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 192 547 496 245 171 99 160 331 137 36 252 294 76 3036

Inappl 20 102 184 3 1 0 6 1 0 0 0 75 245 637

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84M CD2A84N CD2B15C CD2D11B CD5007B CD501O
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE2107I CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 637 tests were inapplicable for the
reasons indicated:

a. The following 285 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)

3-2

TEST INFORMATION

C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

b. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

c. The following 16 tests are not applicable because this
implementation does not support a predefined type SHORT INTEGER:

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55B09D B86001V
CD710E

d. C45231D, B86001X, and CD710IG are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, L.NGINTEGER, or SHORTINTEGER.

e. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAXMANTISSA is less than 48.

f. D64005G is not applicable because this implementation does not
support nesting 17 levels of recursive procedure calls.

g. C86001F is not applicable because, for this implementation, the
package TEXT 10 is dependent upon package SYSTEM. This test
recompiles package SYSTEM, making package TEXTI0, and hence
package REPORT, obsolete.

h. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

i. B8600lZ is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

j. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

k. CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types.

1. CD2A6lE and CD2A61G are not applicable because this implementation
does not support an 8 bit integer type.

m. CD2A61I and CD2A61J are not applicable because this implementation
does not support size clauses for array types, which imply
compression, with component types of composite or floating point
types. This implementation requires an explicit size clause on
the component type.

3-3

TEST INFORMATION

n. CD2A84B. .1 (8 tests) and CD2A84K. .L (2 tests) are not applicable
because this implementation does not support size clauses for
access types.

o. The following 42 tests are not applicable because this
implementation does not support an address clause when a dynamic
address is applied to a variable requiring initialization:

CD5003B. .H (7) CD5O11A. .H (8) CD5O11L. .N (3) CD5011Q
CD5011R CD5O12A. .1 (9) CD5012L CD5013B
CD5013D CD5013F CD5013H CD5013L
CD5013N CD5013R CD5Ol4T. .X (5)

p. CD5O12J, CD5O13S, and CD5014S are not applicable because this
implementation does not support address clauses for tasks.

q. The following 242 tests are inapplicable because sequential, text,
and direct access files are not supported:

CE2lO2A..C (3) CE21O2G..H (2) CE2102K CE2lO2N..Y (12)
CE2lO3C..D (2) CE21O4A. .D (4) CE21O5A. .B (2) CE21O6A..B (2)
CE21O7A. .H (8) CE2107L CE21O8A. .B (2) CE21O8C. .H (6)
CE2lO9A. .0 (3) CE2llOA. .D (4) CE2lllA. .1 (9) CE2ll5A. .B (2)
CE22OlA. .0 (3) EE22O1D. .E (2) CE22OlF. .N (9) 0E22O4A. .D (4)
CE22Q5A CE2208B CE24OlA. .0 (3) EE2401D
CE2401E. .F (2) EE2401G CE2401H. .L (5) CE2404A. .B (2)
CE2405B CE2406A CE2407A. .B (2) CE2408A. .B (2)
0E2409A. .B (2) CE2410A. .B (2) CE2411A CE3102A. .B (2)
EE3102C CE3lO2F. .H (3) CE31O2J. .K (2) CE3103A
CE31O4A. .C (3) CE3107B CE31O8A. .B (2) CE3109A
CE3110A CE3ll1A. .B (2) CE31llD. .E (2) CE31l2A. .D (4)
CE31l4A. .B (2) CE3115A EE3203A CE3208A
EE3301B CE3302A CE3305A CE3402A
EE3402B CE3402C. .D (2) CE34O3A..C (3) CE3403E. .F (2)
CE3404B. .D (3) CE3405A EE3405B CE34O5C. .D (2)
CE3406A. .D (4) CE34O7A. .0 (3) CE3408A. .C (3) CE3409A
CE3409C. .E (3) EE3409F CE3410A CE341OC. .E (3)
EE341OF CE3411A CE3411C CE3412A
EE3412C CE3413A CE3413C CE3602A. .D (4)
CE3603A CE3604A. .B (2) CE36O5A. .E (5) CE36O6A. .B (2)
CE3704A. .F (6) CE3704M. .0 (3) CE3706D CE3706F. .G (2)
CE3804A. .P (16) CE380SA. .B (2) CE3806A. .B (2) CE3806D. .E (2)
CE3806G. .H (2) CE3905A. .0 (3) CE3905L CE3906A. .C (3)
CE3906E. .F (2)

r. CE2lO3A. .B (2 tests) and CE3107A are not applicable because this
implementation does not support external file CREATE and OPEN
operations. These tests raise the exception USE-ERROR. (See
Section 3.6)

3-4

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn't anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 13 tests.

The following tests were split because syntax errors at one point resulted
in the comniler not detecting other errors in the test:

B24009A B33301B B38003A B38003B B38009A B38009B
B41202A B91001H BC1303F BC3005B

CE2103A, CE2103B, and CE3107A required code modifications because the tests
raise USE ERROR, for which there is no exception handler, and fail to
execute properly. An exception handler for USE ERROR was added to each
test. When USE ERROR was raised, a message was printed stating this. The
AVO ruled that it was acceptable for -these tests to raise USE ERROR and be
graded as not applicable.

3.7 ADDITIONAL TESTING TNFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the VADS VMS->MIL-STD-1750A, V6.0, MP compiler was submitted to the AVF
by the applicant for review. Analysis of these results demonstrated that
the compiler successfully passed all applicable tests, and the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the VADS VMS->MIL-STD-1750A, V6.0, MP compiler using ACVC
Version 1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host computer: DEC MicroVAX III
Host operating system: VMS 5.0
Target computer: Tektronix 1750A Emulator

(Ethernet Download), vl.O0-O0

3-5

TEST INFORMATION

Target operating system: VADS EXEC v6.0
Compiler: VADS VMS->MIL-STD-1750A, V6.0, MP

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the DEC MicroVAX III. After compiling, a SET HOST
RENTAL was used to download and execute the tests from another VMS host (a
DEC MicroVAX II). This machine was able to read the linked objects
directly via DECNET. This additional machine was used only because the
TEKTRONICS 8540 Ethernet Software and hardware is licensed only for that
MicroVAX II. All executable tests were run on the Tektronix 1750A Emulator
(Ethernet Download), vl.00-00. Results were printed from the host
computer.

The compiler was tested using command scripts provided by Verdix
Corporation and reviewed by the validation team. The compiler was tested
using all default option settings. See Appendix E for a complete listing
of the compiler options for this implementation.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Aloha OR and was completed on 16 November 1989.

3-6

APPENDIX A

DECLARATION OF CONFORMANCE

Verdix Corporation has submitted the following
Declaration of Conformance concerning the VADS

VMS->MIL-STD-1750A, V6.0, MP compiler.

A-1

DECLARA7TION OF CONFORMANCE

Compiler Implementor: VERDIX Corporation
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: VADS VMS -> MIL-STD-1750A Version: 6.0, UP
Host Architecture ISA: DEC Microvax III OS&VER#: VMS 5.0
Target Architecure ISA: Tektronix 1750A Emulator OS& VER#: VADS EXEC v6.0

(Ethernet Download), vl.00-00

Implementor's Declaration

I, the undersigned, representing Verdix Corp., have implemented no deliberate extensions to the Ada
Language Standard ANSI/MIL-STD-1815A in the compilers(s) listed in this declaration. I declare that
VERDIX is the owner of record of the Ada language compiler(s) listed above and, as such, is responsi-
ble for maintaining said compiler(s) in conformance to ANSUMIL-STD-1815A. All ceruficates and
registrations for the Ada language compiler(s) listed in this declaration shall be made only in the
owner's corporate name.

- -- Date:
Stephen F. Zeigler
Vice-President
Ada Products Division

Owner's Declaration

I, the undersigned, representing Verdix Corp., take full responsiblity for implementation and mainte-
nance of the Ada compiler(s) listed above, and agree to the public disclosure of the final Validation
Summary Report. I declare that of all the Ada language compilers listed, and their host/target perfor-
mance are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

Date:

Stephen F. Zeigler
Vice-President
Ada Products Division

A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the VADS VMS->MIL-STD-1750A, V6.0, MP compiler, as
described in this Appendix, are provided by Verdix Corporation. Unless
specifically noted otherwise, references in this Appendix are to compiler
documentation and not to this report. Implementation-specific portions of
the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONGFLOAT is digits 9 range -1.70141183E+38 .. 1.70141183E+38;

type DURATION is delta 0.001 range -2147483.648 .. 2147483.647;

end STANDARD;

B-I

1. Implementation-Dependent Pragmas

1.1. NLINEONLY Pragma
The INLINE_ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogrnm must always be inlined. This pragma also suppresses the generation of a callable
version of the routine which saves code space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive a warning message will be emitted and an PROGRAM ERROR will be raised at run
time.

1.2. BUILT-IN Pragma
The BUILT IN pragma is used in the implementation of some predefined Ada packages, but provides
no user access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINE-CODE package.

1.3. SHARE-CODE Pragma

The SHARE CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in a compilation, but before any subsequent compilation unit.
When the first argument is a generic unit the pragma applies to all instantiations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
tiation, or overloaded instantiations.

If the second argument is TRUE the compiler will try to share code generated for a generic insantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each instantiation will get a unique copy of the generated code. The extent to which code is
shared between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit.
The name pragma SHARE BODY is also recognized by the implementation and has the same effect as
SHARE-CODE. It is included for compatability with earlier versions of VADS.

1.4. NO IMAGE Pragma

The pragma suppresses the generation of the image array used for the IMAGE attribute of enumeration
types. This eliminates the overhead required to store the array in the executable image. An attempt to
use the IMAGE attribute on a type whose image array has been suppressed will result in a compilation
warning and PROGRAM-ERROR raised at run time.

1.S. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subomram or variable defined in Ada and
allows the user to specify a different external name that may be used to reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

1.6. INTERFACE NAME Pragma

The INTERFACENAME pragma takes the name of a a variable or subprogram defined in anotlaer
language and allows it to be referenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external reference to the second, linkargument. The pragma is
allowed at the place of a declarative item in a package specification and must apply to an object or

B-2

subprogram declared earlier in the same package specification. The object must be declared as a scalar
or an access type. The object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICITCODE Pragma
Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON.

1.8. OPTIMIZE CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be optimized by the compiler. The
default is ON. When OFF is specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no effect.

22. ELABORATE

This pragma is implemented as described in Appendix B of the Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The Ada subprograms can be either func-
tions or procedures. The types of parameters and rhe result type for functions must be scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY SIZE
This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NONREENTRANT

This pragma takes one argument which can be the name of either a library subprogram or a subprogram
declared immediately within a library package spec or body. It indicates to the compiler that the sub-
program will not be called recursively allowing the compiler to perform specific optimizations. The
pragma can be applied to a subprogram or a set of overloaded subprograsm within a package spec or
package body.

2.8. NOT ELABORATED

This pragma can only appear in a library package specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada package that is

B-3

referenced from a language other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

2.9. OPTIMIZE
This pragma is recognized by the implementation but has no effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned representation for composite types. It will
not causes objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE

The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task type declared immediately within a library
package spec or body. The pragma directs the compiler to optimize certain tasking operations. It is
possible that the statements in a task body will prevent the intended optimization, in these cases a warn-
ing will be generated at compile time and will raise TASKINGERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no effect.

2.15. STORAGEUNIT

This pragma is recognized by the implementation. The impleinentation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that DIVISION CHECK and in some cases
OVERFLOWCHECK cannot be supressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The implementation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address clause has been given, it refers to
the corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package
MACHINE CODE. The attribute is only allowed within a machine code procedure.

B-4

See section F.4.8 for more information on the use of this attribute.

(For a package, task unit, or entry, the 'REF attribute is not supported.)

4. Specification Of Package SYSTEM
Copyrilht 1917. 1933. 1939 Verdix Corporation
Preserve line numbers as they are reported in ACVC tests.

-ith unsigned-types;
package SYSTEM is

prape suppres(ALLOEUXS;
p::= ::!pros a(WOMPTlQ41ABLSS);
pra -elciaborated;

type NWS~ is (m17S0a 1

SYSTE.IN"l constant X"~e :. in1
7
50a;

STORACEJINIT constant :. 16;
A14DRYS I constant :a 65536:

.. System.Dpendont Nam d Nuambers

%IININT constant :a -2_147_483_648;
NXINT constant i,2 147_483_647;
.%4AXDIGITS constant :.9;
SNIXr4ISSA constant :a 31;
FINE DELTA constant :a2.0(3:
TIC constant := 0.01;

.Other System-dependent Declarations

subtypt PRIORITY is INrEGER rangei 0 .. 99;

%MXREC SiZE integer :- 255;

type ADDRESS is private;

Iacto ~ A: ADDRSS; : ADDRESS) reta:: BOOLEAN,
(unctionU Z: (A: ADDESS; :ADDRESS reurBOOLEAN':
funct ion *- ADDRESS; 3: ADDRESS) return BOOLEAN;

f=:cio :4,((A; ADDRSS; :ADDRESS! ret:rn BOOLEAN:
Iuactio CA: ADCESS; B ADDRESS retr INTEGER:

fuIo r(A; ADDESS: I: INTEGER) return ADDESS;
f::::!t ((nA: ADDESS: I : NTEE) ret ADDRESS:

function (1: LfJlQELD TYPES.UNWSICNED INTEGERR) return ADDRSS;

funct ion NCI.RYADRSS
(1: ENS ICNDWTYPES. LVSSIQED INEGER) return ADRESS renaes

NOAGER cons tant ADDESS;

.. 1
7

508-specilics
EXTENDED SNISORY B OOLEAN :- FALSE:

type SHORTADDRESS is private:
NOSHT-ADDR :cons tant SHORT-ADDRESS;

subtype SEGNT is INrEGER range 0 .. INTEGER'LAST;

(out ion OFPSETOP(A: ADDRSS) ratern SHO~RTADDRESS;
fncto SE~btDrITOP(A: ADDESS) return SEGKENT:
,:::,ion SEalwNT OF rti SEatENw
function N4A RBS6S(A: SHORT-AURES; SEG: SECNENT) return ADDRSS;
fuaction PHYSICALADDRSSI LOW-INTEGER) return SHORT ADDESS:

pr-rte

type ADDRESS is neu, integer:

NOADR :constant ADDRESS :u 0:

pram 13UILTlNU">);
prs~ BUILTIN(') ;
progra 6UILTIN">a);
pragum BUILTIN('<n):
prau 9UILT1lN*-');
pragai BUILTIN('c);

type SHORTADRFSS is new integer:
,10ORTADR : constant SIORTAOESS a0:

pragove ,nlone/OFPSETOF);
praga n,n&(FCShdwtN0 O);
prao. uln%(W"AD1ORESS):

B-5

prsg inl ine(PHYSICAL_ACCS):

ead SYSTE4;

S. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access by
the target hardware, pragma PACK applied to a record eimii" the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record representation is
required.

5.2. Size Clauses

For scalar types a representation clause will pack to the number of bits required to represent the range
of the subtype. A size clause applied to a record type will not cause packing of components; an expli-
cit record representation clause must be given to specify the packing of the components. A size clause
applied to a record type will cause packing of components only when the component type is a discrete
type. An error will be issued if there is insufficient space allocated. The SIZE attribute is not sup-
ported for access or floating point types.

5-3. Address Clauses

Address clauses are only supported for variables. Since default initialization of a variable requires
evaluation of the variable address elaboration ordering requirements prohibit inititalization of a variables
which have address clauses. The specified address indicates the physical address associated with the
variable.

5.4. Interrupts

Interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides an assembly language interface for
the target machine. It provides the necessary record type(s) needed in the code statement, an enumera-
tion type of all the opcode mneumonics, a set of register definitions, and a set of addressing mode func-
tions.

The general syntax of a machine code statement is as follows:

CODE n'(opcode, operand (, operand});

where n indicates the number of operands In the aggregate.

A special case arises for a variable number of operands. The operands are listed within a subaggregate.
The format is as follows:

B-6

CODEN'(opcode, (operand (, operand)));

For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE_0'(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE-CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE CODE must be static expressions, string
literals, or the functions defined in MACHINECODE. The 'IEF attribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT -TYPE'SIZE is very large, MAX REC SIZE is used
instead. MAXRECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE UNIT bits. DIRECT IO will raise USEERROR if
MAX REC SUM exceeds this absolute limit.
Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as the record size (expressed in
STORAGE UNITS) when the size of ELEMENT TYPE-exce ds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is very large, MAX REC SIZE is used
instead. MAX RECORD SIZE is defined in SYSTEM and can be changed by a program before
instantiating INTGER 10 to provide an upper limit on the record size. SEQUENTIAL_10 imposes no
limit on MAX REC SIZE.

11. Implementation Limits

The following limits are actually enforced by the implementation. It is not intended to imply that
resources up to or even near these limits are available to every program.

B-7

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is slightly less than 32,000 x STORAGE UNITS.
The maximum size of a statically sized record type is slightly less than 32,000 x STORAGE UNITS.
A record type or array type declaration that exceeds these limits will generate a warning message.

11.3. Default Stack Size for Tasks
In the absence of an explicit STORAGE SIZE length specification every task except the main program
is allocated a fixed size stack of 400 ST(RAGE UNITS. This is a user-configurable parameter. This is
the value returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size
In the absence of an explicit STORAGE SIZE length attribute the default collection size for an access
type is 100 times the size of the designated type. This is the value returned by T'STORAGESIZE for
an access type T.

11.5. Limit on Declared Objects
There is an absolute limit of approximately 32,000 x STORAGE UNITS for objects declared statically
within a compilation unit. If this value is exceeded the compiler will terminate the compilation of the
unit with a FATAL error message.

B3-8

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, suchas the maximum length of an input line and invalid file names. A test thatmakes use of such values is identified by the extension .TST in its filename. Actual values to be substituted are represented by names that beginwith a dollar sign. A value must be substituted for each of these namesbefore the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC SIZE 16
In integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIG IDi (l..498 => 'A', 499 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

SBIG ID2 (1..498 => 'A', 499 => '2')
An identifier the size of the
maximum input line length which
is identical to $BIG IDI except
for the last character.

$BIG ID3 (1..249 => 'A', 250 => '3',
Kn identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG ID4 except
for a character near-the middle.

C-1

TEST PARAMETERS

Name and Meaning Value

$BIG ID4 (1..249 => 'A', 250 => '4',
;n identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG ID3 except
for a character near the middle.

$BIG INT LIT (l..496 => '0', 497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG REAL LIT (1..493 => '0', 494..499 => "69.OE1")
universal real literal of

value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG STRING1 (1 => '"', 2..200 => 'A', 201 => '"')
string literal which when

catenated with $BIG STRING2
yields the image of $SIG IDI.

$BIG STRING2 (1 => '"', 2..300 => 'A', 301 => '1',
A string literal which when 302 => '"')
catenated to the end of
$BIG STRING! yields the image of
$BIG-ID1.

$BLANKS (1..479 => '
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT LAST 255
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULT MEM SIZE 65536
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULT STOR UNIT 16
An integer literal whose value
is SYSTEM.STORAGE UNIT.

C-2

TEST PARAMETERS

Name and Meaning Value

$DEFAULTSYS NAME M1750A
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 0.0000000004656612873077392578125
A real literal whose value is
SYSTEM.FINE DELTA.

$FIELDLAST 32767
A universal integer
literal whose value is
TEXT IO.FIELD'LAST.

$FIXED NAME NO SUCH TYPE
The name of a predefined -CT
fixed-point type other than
DURATION.

$FLOAT NAME NO SUCHTYPE
The name of a predefined -
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONGFLOAT.

$GREATER THAN DURATION 100000.0
A universal real literal that
lies between DURATION'BASELAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER THAN DURATION BASE LAST 10000000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH PRIORITY 99
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL EXTERNAL FILE NAME1 /illegal/filename/2}]$%2102C.DAT
An -external- file name which
contains invalid characters.

$ILLEGAL EXTERNAL FILE NAME2 /illegal/file name/CE2102C*.DAT
An external file name which
is too long.

$INTEGER FIRST -32768
A universal integer literal
whose value is INTEGER'FIRST.

C-3

TEST PARAMETERS

Name and Meaning Value

$INTEGER LAST 32767
A universal integer literal
whose value is INTEGER'LAST.

$INTEGER LASTPLUS_1 32768
A universal integer literal
whose value is INTEGER'LAST + 1.

SLESS THAN DURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS THAN DURATION BASE FIRST -10000000.0
A universal reaI literal that is
less than DURATION'BASE'FIRST.

SLOW PRIORITY 0
Xn integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC 31
An inieger literal whose value
is SYSTEM.MAXMANTISSA.

$MAX DIGITS 9
Maximum digits supported for
floating-point types.

$MAX IN LEN 499
Maximum input line length
permitted by the implementation.

$MAX INT 2147483647
X universal integer literal
whose value is SYSTEM.MAXINT.

$MAX INT PLUS 1 2147483648
A universal integer literal
whose value is SYSTEM.MAX INT+I.

$MAX LEN INT BASED LITERAL (1..2 => "2:", 3..496 => '0',

A universal- integer based 497..499 => 11:")
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be $MAXINLEN
long.

C-4

TEST PARAMETERS

Name and Meaning Value

$MAX LEN REAL BASED LITERAL (1..3 => "16:", 4..495 => '0',
A universal real based literal 496..499 => "F.E:")
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $MAXINLEN long.

$MAX STRING LITERAL (1 => '"', 2..498 => 'A', 499 => '"')

T string literal of size
$MAX IN LEN, including the quote
characters.

$MIN INT -2147483648
K universal integer literal
whose value is SYSTEM.MIN INT.

$MIN TASK SIZE 16
An inTeger literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCH TYPE AVAILABLE
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NAME LIST M1750A
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASED INT 16#FFFFFFFD#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

SNEW MEM SIZE 65536
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT MEM SIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

C-5

TEST PARAMETERS

Name and Meaning Value

$NEW STOR UNIT 16
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

SNEW SYS NAME M1750A
; value of the type SYSTEM.NAME,
other than $DEFAULT SYS NAME. If
there is only one value-of that
type, then use that value.

$TASK SIZE 16
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STICK 0.01
A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an ,nintr-2rd il1 e-ality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF THE GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is illegal with respect to the units it depends on: by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object's size be no
greater than 10 although its subtype's size was specified to be 40
(line 137).

D-1

WITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These
tests wrongly attempt to check the size of objects of a derived type
(for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the 'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84M..N, and CD50110 (5 tests): These tests
assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

i. CD2B15C and CD7205C: These tests expect that a 'STORAGESIZE length
clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control
must not be expected.

j. CD2DllB: This test gives a SMALL representation clause for a derived
fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

k. CD5007B: This test wrongly expects an implicitly declared subprogram
to be at the address that is specified for an unrelated subprogram
(line 303).

1. ED7004B, ED7005C..D, and ED7006b..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas: the AVO
withdraws these tests as being inappropriate for validation.

m. CD71O5A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

n. CD7203B and CD7204B: These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by the WG9
ARG.

o. CD7205D: This test checks an invalid test objective: it treats the
specification of storage to be reserved for a task's activation as
though it were like the specification of storage for a collection.

WITHDRAWN TESTS

p. CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

q. CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

r. CE3301A: This test contains several calls to ENDOFLINE and
END OF PAGE that have no parameter: these calls were intended to
specify a file, not to refer to STANDARDINPUT (lines 103, 107, 118,
132, and 136).

s. CE3411B: This test requires that a text file's column number be set to
COUNT'LAST in order to check that LAYOUTERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY VERDIX CORPORATION

Compiler: VADS VMS->MIL-STD-1750A, V6.0, MP

ACVC Version: 1.10

VADS ADA - Ada compiler

Syntax
VADS ADA source file [....

Description

The command VADS ADA executes the Ada compiler and compiles the named Ada source file,
ending with the .A suffix. The file must reside in a VADS library directory. The ADA.LIB file in this
directory is modified after each Ada unit is compiled.

The object for each compiled Ada unit is left in the [.OBJECTS] subdirectory in a file with the same
name as that of the source with .01, .02, etc. substituted for .A. The executable file is left in the VADS
library and has the name of the 'main' unit with the extension .EXE. For cross compilers, the file
extension is .VOX. The /EXECUTABLE qualifier can be used to produce an executable with some
other name.

By default, VADS ADA produces only object and net files. If the /MAIN option is used, the compiler
automatically invokes VADS LD and builds a complete program with the named library unit as the
main program.

Non-Ada object files may be given as arguments to VADS ADA. These files will be passed on to the
linker and will be linked with the specified Ada object files.

Command line options may be specified in any order, but the order of compilation and the order of
the files to be passed to the linker can be significant.

Several VADS compilers may be simultaneously available on a single system. The VADS ADA
command within any version of VADS on a system will execute the correct compiler components
based upon visible library directives.

Program listings with a disassembly of machine code instructions are generated by VADS DB or
VADS DAS.

Qualifiers

/APPE ND Append all output to a log file.

/DEPENDENCIES Analyze for dependencies only; no link will be performed if this
option is given (/MAIN and /OUTPUT options must not be used with
this qualifier).

/ERRORS[= (option [... 1)1 Process compilation error messages using the ERROR tool and
direct the output to SYS$OUTPUT; the parentheses can be omitted
if only one qualifier is given (by default, only lines containing errois
are listed).

E-2

VADS ADA

Options:

LISTING List entire input file.

EDITOR[= "editor"]
Insert error messages into the source file and
call a text editor (EDT by default). If a value is
given as a quoted string, that string is used to
invoke the editor. This allows other editors to
be used instead of the default.

OUTPUT[= file-name]
Direct error processed output to the specified
file name; if no file name is given, the source
file name is used with a file extension .ERR.

BRIEF list only the affected lines [default]

Only one of the BRIEF, LISTING, OUTPUT, or EDITOR options can
be used in a single command.

For more information about the /ERRORS option, see also Chapter
NO TAG THE COMPILER, Section NO TAG COMPILER ERROR
MESSAGE PROCESSING on page NO TAG.

/EXECUTABLE = file name
Provide an explicit name for the executable when used with the
/MAIN qualifier; the filename value must be supplied (if the file type
is omitted, .EXE is assumed).

/KEEP IL Keep the intermediate language (IL) file produced by the compiler
front end.

/LIBRARY = library name Operate in VADS library libraryname (the current working directory *
is the default). I

/UNKARGUMENTS = ,,va/ue,,
Pass command qualifiers and parameters to the linker.

/MAIN[= unitname] Produce an executable program using the named unit as the main
program; if no value is given, the name is derived from the first Ada
file name parameter (the .A suffix is removed); the executable file
name is derived from the main program name unless the
/EXECUTABLE qualifier is used.

/NOOPTIMIZE Do not optimize.

/NOWARNINGS Suppress warning diagnostics.

/OPTIMIZE[= number] Invoke the code optimizer (OPTIM2). An optional digit (there is no
space before the digit) limits the number of passes by the optimizer:

no /OPTIMIZE option, make one pass

/OPTIMIZE no digit, optimize as far as possible
/OPTIMIZE = 0 prevents optimization

/OPTIMIZE = 1 no hoisting

/OPTIMIZE = 9 full optimization
The addition of the INFO directive, OPTIM3:INFO:TRUE, to the
ADA.LIB will cause the compiler to use a new optimizer (OPTIM3)
that generates faster code.

E-3

VADS ADA

The default level of optimization for OPTIM3 is 04. Note that
optimization levels for OPTIM3 are more than simply additional
iterations:

/OPTIMIZE no digit, full optimization (same as OPTIM2
VADS ADA /OPTIMIZE = 9)

/OPTIMIZE = 0 prevents optimization

/OPTIMIZE =1 no hoisting (same as OPTIM2 VADS ADA
/OPTIMIZE= 1)

/OPTIMIZE = 2 no hoisting but more passes

/OPTIMIZE = 3 no hoisting but even more passes

/OPTIMIZE = 4 hoisting from loops

/OPTIMIZE = 5 hoisting from loops but more passes

/OPTIMIZE = 6 hoisting from loops with maximum passes

/OPTIMIZE=7 hoisting from loops and branches

/OPTIMIZE = 8 hoisting from loops and branches, more
passes

/OPTIMIZE = 9 hoisting from loops and branches, maximum
passes

Hoisting from branches (and cases alternatives) can be slow and
does not always provide significant performance gains so it can be
suppressed.

For information on INFO directives see IMPLEMENTATION
REFERENCE, INFO Directive Names, page 5-2 For information on
adding and deleting INFO directives, see JVADS COMMAND
REFERENCE], VADS INFO, page NO TAG and for more information
about optimization, see COMPILER, 4.4 Optimization, page 4-3.

/OUTPUT= file-name Direct the output to file-name (the default is SYS$OUTPUT).

/RECOMPILE LIBRARY = VADSibrary
Force analysis of all generic instantiations causing reinstantiation
of any that are out of date.

/SHOWALL Print the name of the front end, code generator, optimizer, linker and
list the tools that will be invoked.

/SUPPRESS Apply pragma SUPPRESS for all checks to the entire compilation.

[TIMING Print timing information for the compilation.

NERBOSE Print information for the compilation.

See also Chapter NO TAG VADS COMMAND REFERENCE, VADS DAS on page NO TAG, VADS DB
on page 9-3, VADS ERROR on page NO TAG, VADS LD on page NO TAG, and VADS MKLIB on
page 8-21.

Diagnostics

The diagnostics produced by the VADS compiler ara intended to be self-explanatory. Most refer to
the AM. Each RM reference includes a section number and optionally, a paragraph number enclosed
in parentheses.

E -4

